Tag Archives: droop

Shock Setup Update

IMG_4458[1]

Max Mört and I have tested some shock settings the last couple of days, with Max testing front pistons, and me rear. We came up with a setup that was better on our home track, which is medium grip, a lot of off camber, elevation changes, big and small jumps, hairpins and sweeping corners. So a bit of everything, great for testing. Our conclusions so far:

Front: 5 x 1.4mm Flat piston, 400cst (30wt) at 20deg. I assume anywhere else in the world, start with one or two steps thicker oil. The feel is medium, you feel the oil, but it doesn’t feel thick or slow.

Rear: 7 x 1.4mm Flat piston, 350cst (27.5wt) at 20 deg. I assume anywhere else in the world, start with one or two steps thicker oil. The feel is light, you feel the oil slightly, it doesn’t feel springy, but it is light and fast.

Springs: JQ grey all round, or HB Yellow, or Kyosho Blue. JQ gives less support, so if the car feels too soft, try one of the others. We didn’t compare HB and Kyosho back to back. They were both good, a bit more firm than the JQs.

Locations: Outer on both towers, middle on both arms.

Ride height: 26mm front and rear. If it feels like it isn’t going over bumps or jumps well, raise to 27, or max 28. But start with 26/26.

Downtravel: Measuring like this, 58mm front and rear with AKA Grid Irons.

Conclusion: This setup improved how the car landed, it didn’t slap the front end and get unsettled, it also made the front ride higher, it didn’t seem to dive as much in bumps and on corner entry. The rear was more plush and handled the bumps better. It had a bit more of that “wet rag” feel, where it just follows the track conforming to the track like a wet rag being pulled along the surface. I also ran conical pistons, flat side up, which were great, but I have some other things I am testing which make the car more stable, and that’s why I may be able to get away with running them. Flats are the safe bet.

 

Tagged , ,

Down travel re-visited

I wanted to write a bit more about droop, as this track has an excellent example of a section where reducing droop from the maximum we run really helped the car a lot. You can read the original, now also updated down travel story here.

So starting off with 102/123 shock lengths, the car was really good, but I couldn’t make it round the long on power sweepers, the section starting at 8 seconds and ending at 12 seconds. The car would not “stick” if I simply went full throttle and turned the wheel. It would rise up over the single jump and want to flip over, or I just could not get a round arc. Same goes for the next long on power right hander, it didn’t stay as flat and low.

By simply reducing the down travel, only 2mm in shock length, this made a significant difference to the car’s handling in this section. It remained as good everywhere else, no really big difference, as the track was smooth, and the jumps well built, but in these sections I could now just go full throttle and turn the wheel, and it would remain stable and lower to the ground, allowing me to without changing my driving, maintain a lot more speed and do so consistently.

This is why I say, start off with the most droop we run, and keep reducing because it will be faster. Going too far would make it bad also, with the rear end breaking loose suddenly in the off cambers, and it not jumping or landing well. Also in the long sweepers, the car would begin flipping over without warning. Droop makes this happen slower, and when you reach the sweet spot it won’t even begin to happen until you make a mistake.

I ended up running 100mm front and 121 rear. The setup sheet from this track can be found here.

Tagged , , , , , ,

Down travel, or Droop

Today I went to Revelation Raceway for some testing. That track really is terrible in the day time. Sorry Dana. It’s dusty as hell, and loose, but then a high grip groove starts forming. So in one section, you can go from loose to high grip to loose again. In other words, very good for testing, and for improving driving, but definitely not the most fun. At night they water so then it’s a lot more fun too.

I wanted to see about testing different droop settings. I have actually written an article on the subject for VRC Magazine that you can read here. Now I would just like to clarify further, and give you the settings specifically used on the White Edition LV. I basically ran the setup I had a few days ago at Dialed in, which you can find here. The only change from that was that I raised the front and rear links back up on the hubs, which I preferred. I will write another story about that later.

Right now we always run the same shock positions in the arms, and either outer, or one in from outer on the towers, so measuring the shock length works well. People always think they can compare shock lengths to determine droop between different car brands. Forget about that, it doesn’t work. Watch the video below to see a way you can compare brands, or any shock position setup. Just do that with wheels on. I always check both ways, so I know where I am at, shock length and actual droop with wheels.

Basically, it’s always best to start off with max droop, and then reduce it, until the car starts getting worse. The reason is that reducing droop will always be faster, up to the point the car becomes erratic due to sudden loss of traction or twitchy handling. More droop will always be the safest and easiest place to start, so start there. Kind of how you tune an engine by starting off on the rich side.

IMG_1864

IMG_1865

 

Front Shock Length on LV: 99mm-102.5mm

Rear Shock Length on LV: 120mm-123mm

For the front, in order to achieve the right droop, you need to dremel the front arm as shown here. You also need to leave about 1.5mm of threads showing on the shock shaft.

What it Does

I mentioned less droop is faster, and here is why. Watching the video of a lap above, note the corners, coming onto the straight, and end of the straight somewhat, but specially the two long left handers at 20 seconds and 25 seconds. In sections like that the car will naturally carry more corner speed, and maintain a round arc with less effort by the driver. You can go from really focusing on maintaining speed in a corner to the car just doing it “by itself”. The tricky thing is, that if you reduce droop too much, it will again start being hard to maintain speed and flow.

With too much droop the car rolls a lot, and doesn’t stay as flat. You may have more on power steering, but it’s not as precise, and you need to correct your line choice. When the droop is correct, you just turn the wheel and gas it, and the car does a smooth arc. When you have too little droop, the car will feel erratic and stiff, and won’t hold it’s line either.

If you look at the left hander at 20 seconds, do you notice how I have to correct before the 2nd apex? In this video I had reduced the front droop too much, and it made the front end twitchy, and I just don’t have the talent to adapt my driving that quick, so I wasn’t able to do a smooth corner. Adding some more front droop would make the car easier to drive there with no change from the driver. But again, remember, having too much droop will make it hard to make a round corner in the same section, the difference is, that instead of being nervous, the car will feel unresponsive, and it will be hard to keep the arc correct.

If you look at 16 seconds, you can see it’s starting to get bumpy in that section. If you reduce the droop too much, the car won’t handle these bumps very well. Adding droop will make it just go through there like they aren’t there.

Reducing droop increases corner speed as I mentioned, but it doesn’t jump, and specially land as well. If you look at 8 seconds in the video, you can see that tricky double single jump. That’s the kind of section that will cause crashes and sketchy situations if you don’t have enough droop. Sometimes without changing anything in your driving, just adding droop, you will find that you stop crashing there. And basically every single jump on this track, if you have more droop, they will be easier.

And in case you are curious, after all that testing, going back and forth, I ended up running 100.5mm front, 123mm rear, still thinking on the way home that 122mm rear would have been faster. There is no right answer!

If you like these sorts of articles, breaking down one set up feature by using a lap of a track, let me know in the comments below, and share this story. Thank you. Otherwise I can’t be bothered to do these, and would rather have a beer or watch some Supercross, or actually both those.

Tagged , , , , , , ,